Theory of prospective tetrahedral ferroelectrics

Anindya Roy and David Vanderbilt

Department of Physics & Astronomy, Rutgers University
Piscataway, New Jersey, USA

In this work we study, using first-principles methods, the energy vs. polarization relation of double perovskites \(AA'BB'O_6 \) where atoms in both A and B sites are arranged in rock-salt order. While rock-salt ordering is common on the B site in \(A_2BB'O_6 \) perovskite compounds, it is very rare on the A site in \(AA'B_2O_6 \) compounds where layered ordering is preferred instead. The high-symmetry structure for this class of compounds is the tetrahedral \(F\bar{4}3m \) space group. If a ferroelectric instability occurs, the energy-vs.-polarization landscape \(E(P) \) will tend to have minima for \(P \) along tetrahedral directions leading to a rhombohedral space group \(R\bar{3}m \), with two different values of spontaneous polarization and associated energy along opposite body diagonals; or along Cartesian directions, leading to space group \(I\bar{mm}2 \). We search for polar soft modes at the \(\Gamma \) point of the high-symmetry \(F\bar{4}3m \) structure and analyze the related eigenvectors to identify ferroelectric instabilities, which we find in \(\text{CaBaTiZrO}_6 \), \(\text{KCaZrNbO}_6 \) and \(\text{PbSnTiZrO}_6 \). We also find some zone-boundary octahedral-rotation instabilities, but do not pursue those here.

The calculations were performed using an \textit{ab-initio} computer code package, ABINIT with norm-conserving pseudopotentials. \(P \) is calculated primarily using the Berry-phase approach.\(^1\) The results of the first-principle calculations are modeled with a Landau-Devonshire expansion that is truncated at either 4th or 5th order in \(P \), and its predictions are found to agree favorably with our calculation. Recently, synthesis of \(\text{SrCaTiMnO}_6 \) in rock-salt order using layer-by-layer molecular-beam epitaxy on a (111) surface orientation has been reported.\(^2\) Unfortunately our calculations on this system indicate no polarized structure.
