Calculation of the Chern-Simons orbital magnetoelectric coupling

Sinisa Coh, David Vanderbilt

Department of Physics & Astronomy, Rutgers University
Piscataway, NJ, USA

Andrei Malashevich, Ivo Souza

Department of Physics, University of California, Berkeley
Berkeley, CA, USA

Recently it was shown1,2 that the orbital part of the linear magnetoelectric coupling (MEC) in an insulator has a geometric-phase contribution that is isotropic and can be characterized by a coupling θ that is only well-defined modulo 2π. Furthermore, this θ in strong \mathbb{Z}_2 topological insulators is unusually large and equals exactly half a quantum ($\theta = \pi$). Experimental observation of this large MEC would require some peculiar breaking of the time-reversal (T) symmetry at the surfaces, but θ might be observed in normal insulators that have T already broken in the bulk. Since there are by now several examples of strong \mathbb{Z}_2 topological insulators having $\theta = \pi$, we believe there is no strong reason why θ should necessarily be small in a normal insulator with broken T. For this reason, we have used density-functional theory to calculate θ in various materials including Cr$_2$O$_3$, Fe$_2$TeO$_6$, BiFeO$_3$, GdAlO$_3$ and magnetically doped Bi$_2$Se$_3$. To calculate θ we express it in terms of well localized Wannier functions to ensure smoothness of the gauge.
